

PRINCIPLES OF MOUSE HUSBANDRY GEORGE KURIAKOSE

DR. IRA TABAS' LAB COLUMBIA UNIVERSITY

Overview

- Mouse reproductive milestones
- Mouse cage density
- Breeding cage set up and schemes
- Factors affecting breeding performance
- Data collection and good colony management
- Cryopreservation

Mouse reproductive milestones

- Gestation of the mouse: 19-21 days
- Weaning age: About 21 days.
- Litter size: 2 to 12 pups/liter
- Sexual maturity: 5 to 8 weeks
- Productive breeding life: 8 months

Mouse cage density

- 5 compatible adult mice in one cage (mouse weighs 25 grams or less)
- 4 compatible mice in one cage

(mouse weighs over 25 grams)

- 3 compatible mice in one cage (mouse weighs over 45 grams)
- Mice that are observed fighting must be separated

Breeding cage set up

- Individual investigators are responsible for managing their own colonies.
- Keep one male and two females for an ideal breeding.
- Once females get pregnant, move one pregnant female to a new cage.
- Once pups are 21 days old, separate them from mother

Overcrowded cages

- "Overcrowded" stamp will be applied to the back of the cage card.
- PI will receive the notification by phone/email by building supervisor
 ICM will split the cages within 24-hours of finding them to be overcrowded.

Influence of Genetic Background on Breeding Performance

- Behavior
- Hybrid vigor
- Birth defects

Mutation/transgenic-associated breeding problems

- Infertility (either gender)
- Mammary function
- Embryonic lethality
- Abnormal behavior

poor mothering instinct aggression

• Shortened breeding life span

tumor development

neurodegeneration

Severity may be affected by genetic background

Non-genetic Factors that Influence Breeding Performance

• Environment

Temperature

Light intensity and light cycle

Noise and vibrations (construction, equipment)

Air pressure

Odors (toxic fumes, perfumes)

• Handling consistency

Over handling-leave pregnant mothers alone Caretaker changes

- Nutrition
- Health status

Data Collection and Record Keeping Critical for successful colony management

Data Collection and Record Keeping

- Collect breeding statistics
 - -birth dates for every liter
 - -interval between litters
 - -litter size

-number of mice that wean (wean:born ratio)

- Monitor genotype and gender frequencies for each breeding unit
- Pedigree records

Non-productive Breeder Criteria

- No litter produced
 - 40 days from date of first mating
- No new liters
 - 40 days from last born date
- No weaned pups
 - 2-3 litters with no wean

Tips for colony management

- Mate mice early, between 7-12 weeks of age
- Establish/collect breeding statistics
- Replace breeders on a rotation (weekly, monthly)
 - breeding life span typically 7-8 months
 - have young breeders available
- Keep good records, evaluate data regularly
- Remove non-productive breeders ASAP

Tips for colony management

- Record and investigate deviations immediately
- In shifting genetic backgrounds, expect fertility changes

-keep older generations available

• Choose breeders carefully

Setting up cages

- Tail clipping <u>can</u> be done after 18 days of age.
- When separating the pups from the mother, isolate males and females in different cages
- When the mice are 7 weeks of age, put them together for breeding.

Labeling the cage

- P.I.: Dr. Ira Tabas
- Investigator:
- Protocol No.:
- Account No.:
- Lab: PH9-405/406
- Tel.: (212) 305-5669/3133

Cage cards

SEPARATED CAGE

P.I. NAME:	PROTOCOL #
DATE FLAGGED:	DATE SEPARATED:
ROOM #	RACK ID#
NOTIFICATION ID:	# OF CAGES MADE
COMMENTS	
	MEDI -LAB & LABEL CU181

SPECIAL REQUISITION CARD

INVESTIGATOR:	DATE:
PROTOCOL #:	EXTENSION:
CAGE CHANGE BY P.I. ONLY	START DATE END DATE
SPECIAL DIET	START DATE END DATE
MEDICATED WATER	START DATE END DATE
G FAST-NO FOOD	START DATE END DATE
G FAST-NO WATER	START DATE END DATE MEDI -LAB & LABEL CU183

SICK ANIMAL

Building	Room
PI	Rack/Cage
Reported by	Date
Vet Med Comments/Dat	e
PI Comments/Date	
	MEDI -LAB & LABEL CU182

Cage cards

TRANSFER

BUILDING OF ORIGIN:
INVESTIGATOR:
ROOM:
DESTINATION BUILDING:
INVESTIGATOR:
ROOM:
DATE OF TRANSFER:
MEDI -LAB & LABEL CU18

P.I	SPECIES:
PROTOCOL:	ACCOUNT:
ARRIVAL DATE:	REPLACEMENTS:

SENTINEL DO NOT MOVE

ROOM/Number:_____ RACK/Number:_____

Mouse numbering system

Observe your colony almost everyday for the proper management

Cryopreservation

- Cryopreservation is an efficient tool for managing colonies
- Cryopreservation = More Space
- Replaces thousands of square feet of animal room space

Cryopreservation=Less Risk

- Contamination
- Disease
- Genetic drift
- Disaster
- Breeding cessation
- Loss of copy number
- Lower cost

- Strain
 - Genetic background
 - Freezing characteristics
- Technique
 - Reliability
 - Time
 - Cost
- Recovery

Acknowledgements

Jackson Laboratories Institute of Comparative Medicine Columbia University

Thanks to

Dr. Ira Tabas